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Thermal Representation of the Energy Density in 
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The energy-momentum tensor of a quantum massless free field in a curved 
spacetime can be written in many cases as an integral with a thermal denominator 
and a modified phase-space numerator. It is shown that in general the thermal 
denominator is related to the bounded nature of the system, which in turn implies 
a representation of the energy density as an infinite numerable sum in Fock 
space. The modification of the phase-space density is related to the absence of 
long-wave contributions for nonzero values of the spi n . 

1. INTRODUCTION 

Much research has been carried out on the relation between accelerated 
or gravitational systems and thermodynamics (Bekenstein, 1973; Hawking, 
1975, 1976; Davies, 1978; Sciama et al., 1981; Hacyan et al., 1985; Hacyan, 
1985, 1986; Hacyan and Sarmiento, 1986, 1989; Sarmiento et al., 1989). In 
particular, it has been shown that the energy-momentum tensor o fa  massless 
flee field of  spin s in the presence of an accelerated mirror can be written 
as (Bunch 1978; Candelas and Deutsch 1977, 1978; Candelas and Dowker, 
1979) 

h(s) I ~ w(w2 +47r2sZa 2) dw 
(T~)= 32zr6j ~ e~O/a+(_a)~+zs diag ( -1 ,  �89 �89 ~) (1.1) 

where a is the local acceleration far from the mirror and h(s) denotes the 
number of  independent helicity states [ h ( s ) =  1 for s = 0 and h(s)= 2 for 
s r  

A similar formula with a positive sign has been found for the energy- 
momentum tensor of a massless free field in an Einstein universe of radius 
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R and for the neighborhood of a Schwarzschild black hole of mass M 
(Birrel and Davies, 1982). 

These formulas have been derived for spin values s = 0, 1/2~ and 1. 
Two important features in them are: 

1. A thermal denominator with a temperature related to the parameters 
of the system I T =  a/2~rkB for an accelerated system, T =  (27rkBR) -~ for 
an Einstein universe, and T = (87rkBGM) -~ for a black hole]. 

2. A modified phase-space numerator with an additional term propor- 
tional to s 2. 

It has also been shown (Bernard, 1974; Dolan and Jackiw, 1974; 
Weinberg, 1974) that a quantum field theory at a finite temperature T in 
Minkowski spacetime can be written as a Euclidean 4-dimensional theory, 
the 4-space being bounded by two planes separated by a distance /3 = 
(kBT) -~ along the temporal dimension. These boundaries imply a rep- 
resentation of the Euclidean energy in the form of an infinite numerable 
sum. This feature suggests that there is a relationship between the 
confinement of a system and the existence of a thermal-like representation 
which could clarify the thermodynamic character of gravitational and cosmo- 
logical systems. 

It is shown in Section 2 that, if under certain conditions a quantity A 
can be represented by an infinite numerable series of discrete terms, then 
it can be written as the integral of a thermal function. The thermal representa- 
tion shows a modified phase-space numerator if the first n terms of the 
series are absent. In Section 3 some examples, such as the zero-point energy 
density between two parallel plates or in an Einstein universe at zero 
temperature, are discussed. Bounded systems at nonvanishing temperature 
(and therefore with a double confinement) are discussed in Section 4. 

In Section 5 some comments on accelerated or gravitational systems 
are made before the paper closes with a few final remarks in Section 6. 
Henceforth, the units used are such that h = 1 = c. 

2. DISCRETE SUMS, CONFINEMENT, AND THERMAL 
REPRESENTATIONS 

Let A be a conserved quantity which can be represented as an infinite 
numerable series of discrete terms. In particular, assume that A may be 
written as 

A= ~ ng(n 2) (2.1) 
n - - 0  

with g(0) a finite constant. 
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Two examples of this representation are (see below): the zero-point 
energy Eo of a free massless scalar field inside a one-dimensional box 
E o3 ( o -Zn=o  n), and the zero-point energy of the free electromagnetic field 

between two parallel plates [Eo-3~,~_o n 3 (Casimir, 1948)]. 
If g(n 2) is expanded as a power series 

o3 
g(n 2) = • ar n2r (2.2) 

r=0 

and substituted in equation (2.1), one gets, after interchanging the sums 
over n and r, that 

oo oo 1 co co 
A =  Y, a, ~ n 2"+1=- Y~ ar ~, Inl 2r+1 (2.3) 

r :O n =0 2 r=0 n=--oo 

Using the Poisson formula (Gelfand and Shilov, 1964), 

~ f(n) = F~- e >~ik~ dcb (2.4) 
n=--co =-- _ 

one may write the second sum in equation (2.3) in the following form: 

1 ~o Inl 2r+' 1 I,b] 2r+l dqS+ 2 I~bl 2r+' e 2~ike" dq5 (2.5) 
k=l  , 

Inserting now the explicit expression for the Fourier transform of 
the distribution 14~[ 2r+1 and the definition of the Riemann ~" function 

co 
~ ' ( m )  = 2 k = l  k-m, it follows that 

1 ~~ ]r/]2r+l ~ I COco 
F(2r+2)  

- - 2 ( - - 1 )  r (2~.)  2r+ 2 ~'(2r + 2) (2.6) 

On the other hand, 

fo co 2"+1 F(2r+2)  &o ~ ~'(2r +2) (2.7) e2~7_ 1 
t z ~ ) -  - 

and therefore 

gets 

m f~-oo fo ~176176 1 ]n[2,+ , 1 t~bl 2r+' d & - 2 ( - 1 ) "  (2.8) 

Inserting equation (2.8) in equation (2.3) and using equation (2.2), one 

lf~_~ fo~Wg(-c~ dw (2.9) A =~  I&]g(q5 2) d & - 2  e2~O~ _ ~ 

The second term looks like a Planckian with a temperature related to 
w and a phase-space density modified by a factor g ( - - t o 2 ) / t o  2. 
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Let us now consider a conserved quantity A that can be written as an 
infinite sum over half-integers; explicitly, 

A = ~ ng(n 2) 
n = 1 / 2 , 3 / 2 , . . .  

Rewriting this as 

(2.10) 

A = s  rn[n~2 ] ' 
.=o,1, [~g t~)  - n g ( n  2) (2.11) 

and using equations (2.2), (2.4), and (2.7), one obtains 

A= Z �89 14,1 =r+' d,b+2 (2.12) 
r = 0  

In this case the second term shows a Fermi-Dirac thermal denominator 
with a temperature that is again related to w. Also, the factor g(--tO2)/tO 2 
modifying the phase-space density is present. 

3. EXAMPLES 

Let us now consider some examples. 

(i) A Free Massless Scalar Field (o Inside a One-Dimensional Box of 
Length L 

Imposing the periodic boundary condition 

&(x = L) = &(x =0)  (3.1) 

and defining k =-2r we obtain the zero-point energy E0 given by 

Eo =-~.~o n =- ~ tb d4~ - ~  ~'(2) 

-- ( 2 r r )2  k d k - 2  e k L l j  (3 .2 )  

For the zero-point energy density P0 one has 

E--~~ 1 - - m [ I / k d k _ 2 f o  ~ k dk  1 
Po=- L 47r ekL_ l .  ] (3.3) 

The second term corresponds to a thermal representation of the negative 
Casimir potential energy. 
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(ii) Electromagnetic Field between Two Metallic Plates Separated by a 
Distance L 

This problem was originally discussed by Casimir (1948). The field 
vanishes at the surface of both plates, implying untwisted boundary condi- 
tions (Birrel and Davies, 1982), the zero-point energy E0 is now proportional 
to --Y'n~O n 3 ,  which gives a zero-point energy density Po in terms of the 
integrals 

I[ k dk_ 
k 3 d k -  2 Jo ekL-- 1 (3.4) 

As in the one-dimensional problem, the last term is a thermal rep- 
resentation of  the negative Casimir potential energy. 

( iii) Electromagnetic Field between a Conducting Plate and a Permeable One 

This problem has been discussed by Boyer (1974). The field vanishes 
at the conducting plate, but is maximal at the permeable plate. Thus, one 
has twisted boundary conditions (Birrel and Davies, 1982). Subtracting a 
physically unobservable divergent term, it is found that the zero-point energy 
density Po is given by 

I ~ to 3 do) 
P~  Jo e---~+l (3.5) 

Note that the Fermi-Dirac denominator is related to the twisted boun- 
dary conditions. 

(iv) Einstein Universes 

The zero-temperature energy density Po of a free massless field with 
spin s in an Einstein universe of radius R has been found to be given as 
follows. 

(a) s=O. Ford (1975) obtains 

1 1 n 3 1 k 3 d k +  (3.6)  
Po - 2r 2 R 3 - -  e 2=kR - 1 n=o2R 47r 2 

The potential energy is positive in this case. 

(b) s = 1 / 2 .  For (1976) obtains 

1 1 ~ 1 
po = 27r2 R3 (2) E - -  n(n2- �88  (3.7) n = 1/2,3/2,... 2R 
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which leads to a physically observable value given by 

f f  k (k2+ dk (3.8) 
1/4R 2) 

e kn + 1 

The factor 2 before the summation sign comes from the two helicity 
states when the spin s ~ 0 .  The modified phase-space density k2~  
k2+ (4R2) -~ is related to the absence of the n = 1/2 contribution in equation 
(3.7). 

(c) s = 1. In this case Ford (1976) obtains 

0o  1 

_ 1 (2) n~o 2-R n ( n 2 -  1) (3.9) P o  - -  2 , n . 2 R 3  

As in equation (3.7), the factor 2 before the summation sign comes 
from the two helicity states when the spin s ~ 0. The n 2 -  1 = (n + 1)(n - 1) 
degeneration shows the absence of the n = 1 long-wave contribution due to 
the periodicity conditions in the 3-sphere (in a similar way, the nl = 1, 
n2 = n3 = 0 modes are absent for the electromagnetic field inside a metallic 
cubic cavity of  side L). 

From equation (3.9) one may write 

p o = ~  k ( k 2 + R  -2) dk+  e kR - 1 (3.10) 

Recall once again that the modification in the phase-space density 
k 2 -  k 2 + R  -2 is due to the n 2 -  1 degeneration in equation (3.9), which in 
turn is due to the absence of the n = 1 long-wave contribution. 

(d) Higher Spin Values. As far as we know, the problem has not been 
solved in a consistent way for s -> 3/2. One might assume that the p rev ious  
process is valid for arbitrary values of the spin s (either integer or half- 
integer). However, such a conjecture has not been proved, and when 
explicitly writing the equation corresponding to an n-dimensional space 
one gets the n 2 -  s 2 degeneration with an integer (half-integer) value of n 
for integer (half-integer) spin s. For s >- 3/2 there is a negative contribution 
from the n values in the interval 0 < n < s, a feature that is rather unpleasant. 

Conserved tensors for arbitrary spin s, which are nonnegative in n- 
dimensional space, have been considered by Hacyan (1985). While his 
results only refer to uniformly accelerated frames, they suggest that the 
correct phase-space numerator  must be of the form 

[oJ2+ s2a2][~o2 + ( s - 1)2a2]. . .  

the last term of the product being oJ 2 or w 2 + ( a / 2 )  2, according to whether 
the spin is an integer or a half-integer number. This is consistent with our 
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previous discussion: the phase-space density is modified because all the 
modes with wave number  n-< s are eliminated. 

The preceding analysis and examples show that the presence of a 
representation with a thermal denominator  is related to the discrete character 
of  the energy sum (which in turn is due to the confined character of  the 
system). For untwisted boundary conditions the sum is carried out over 
integer numbers and one finds a Planckian denominator,  while for twisted 
boundary conditions the sum is over half-integer numbers and the 
denominator  is a Fermi-Dirac  distribution. The presence of a modified 
phase-space numerator  is related (in a spin-dependent way) to the absence 
of  long-wave modes, and the absence of long-wave modes is due to the 
boundary  conditions. 

4. B O U N D E D  SYSTEMS AT A N O N V A N I S H I N G  TEMPERATURE 

As previously stated, Bernard (1974), Dolan and Jackiw (1974), and 
Weinberg (1974) have shown that the partition function for a quantum field 
theory in a Minkowskian spacetime at an inverse temperature/3 is equivalent 
to that for an Euclidean 4-dimensional field theory with the fourth 
dimension, or Euclidean time z, bounded by two parallel planes a distance 
/3 apart. Due to this confinement, the energy in the Euclidean case shows 
discrete eigenvalues, and, as in the examples of  Section 3, the thermal 
representation (canonical ensemble) is related to the confinement of  the 
system along the Euclidean temporal  direction. 

One may now consider a spatially confined system at a nonvanishing 
temperature T. There will be a double discreteness, one associated with the 
spatial confinement and one related to the Euclidean temporal  confinement 
(which in turn is due to the nonnull temperature).  

As an example,  let us consider a free, massless scalar field ~b inside a 
one-dimensional box of length L at a finite inverse temperature/3. Imposing 
untwisted periodic boundary  conditions for both the x and ~, directions 
~b(x, �9 = 13) = 05(x, z = 0) and ~b(x = L, r) = 4~(x = 0, z), one obtains the zero- 
point energy Eo(fl) as 

=5 t .=o" coth 

fo IL 7/" 7/" 
= ~ (b coth d~b + ~ [~[ 

1 

x c o t h ( ~  - ~ )  e :''k4~ dch (4.1) 
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and the zero-point energy density 00(/3) as 

fo o Po(fl ) - Eo _ 1 k coth d k  
L 4 r P  

fo o _ 1 k d k + p t 3 + p L + p t 3  L 
4rr 

where 

Note that PL is 
[equation (3.3)]. 

(4.2) 

1 ~ ~ k d k  
(4.3a) 

Pt3 =-2r J e kt~- I 

1 (~o k d k  

Jo (4.3b) PL=---~-s ekL_ l 

2 ~ 
= n = 1 ( n - - ~  ~"Z  r- '~7~'~2 (4.3c) 

again the negative Casimir potential energy for T = 0  

The "interference term" P~L is equal to zero if/3 = L, and P~L --) 0 if 
/3 >> L or L >>/3. Therefore, if/3 >> L, then 

l lo  ~ po(fl )-~-~-~ r k d k  + pt3 (4.4a) 

and if 13 << L, then 

p o ( / 3 ) ~  1-~- k d k + p L  (4.4b) 
47r 

The analogous structure of pC and PL is associated with the confinement 
in the r and x Euclidean directions, respectively. 

A second example is the electromagnetic field in an Einstein universe 
of radius R at an inverse temperature/3; one then has 

P0(/3) = 27r2R3 n=O R n (n2  - 1) coth (4.5) 

i.e., a linear combination of equation (4.2) and 

1 ~ n 3 coth ~ -  
4~'2R 4 .=0 

l ( f  ~ k~a2 i f0 ~ k~a-k-.~+ 1 : ~  
- -  4 r r 2  ek R _  ~- 2 e 2 ~ k -  l J  rr/3 4 ,,=, ~=1 

[ 9 32n2 24n4 1 
• [n2+(r~rR/ /3)212 [n2+(rT rR / f l ) 2 ]  3 ~ [n2+(rTrR/ /3)2] ,  i (4.6) 
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that is, po(/3) is the sum of the thermal and Casimir terms (both positive) 
and an "interference term." 

5. N O N I N E R T I A L  S Y S T E M S  

The "thermal character" of  the radiation in gravitational or accelerated 
systems has been investigated in the work mentioned at the beginning of 
Section 1. The expectation value of the energy-momentum tensor and the 
energy absorption rate of  a uniformly accelerated detector can be given a 
thermal representation with a temperature proportional  to the inverse of  
the mass of  the gravitational field source or proport ional  to the acceleration 
of the system. 

Near the horizon of  the Schwarzschild black hole of mass M, Sciama 
et al. (1981) found that 

h(s) 
(BIT~IBL 

R-,2M ) 2W2(1 - 2 M / R )  2 

fo ~ 2) doJ . I t 1 
x eZ~,~/x_(_l)2S d l ag ( -1 ,  ~, ~, g) (5.1) 

where X = 1/4M, (B] is the Boulware vacuum, the index r stands for 
renormalized, and s is the spin of  the massless free field (s = 0, 1/2, 1). 

Candelas and Deutsch (1977, 1978) found that, far from an accelerated 
mirror, the energy-momentum tensor of  the field is given by 

h(S) Io~W(wZ+aZsZ)dw e2~"~ - ( - 1 )  2s �9 1 1 l  (T~)r = - 2~.~ d l ag ( -1 ,  ~, ~, ~) (5.2) 

The energy density is negative in both equations (5.1) and (5.2). On 
the other hand, Hacyan et aL (1985) found a thermal representation for the 
expectation value of the energy density as seen in an accelerated system 
without a mirror, and the energy density turned out to be positive. 

The energy absorption rate of  an accelerated detector immersed in a 
scalar field & is given by (Sciama et al., 1981) 

H(w)= f~_o~ e-i~' (~b(t)(~(O)) d t -  la~ e 2~'~176 _ 1 (5.3) 

where a is the constant proper acceleration, and again a thermal 
denominator  is present. 

The above formulas are very similar to the ones found for an Einstein 
universe, with the inverse of  the acceleration replacing the radius R 
(Candelas and Dowker, 1979). This similarity between the results for 
Einstein and Rindler universes suggests that again there must be boundaries 
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for the Rindler coordinates. As was pointed out in Sections 1 and 4, a 
Minkowskian fi'eld theory at a finite temperature is equivalent to a Euclidean 
theory (t --> i~') with 0 <- ~- -- ft. The confinement in the ~- direction implies a 
discrete spectrum and the partition function of the canonical ensemble. 

The Rindler coordinates for an accelerated particle along the x axis 
are given by 

x = a - 1  c o s h ( a o - )  and t = a -1 sinh(ao-) (5.4) 

where a is the acceleration and o- is the proper time in the accelerated 
system. If, as in the Minkowskian thermal case, one moves to the equivalent 
Euclidean space by means of the substitution or--> i.7, equations (5.4) become 

x = a -1 cos(a*7) and r = a -I sin(a,7) (5.5) 

where rl is the Euclidean proper time and ~'= it. The hyperbolas become 
circles and one then has the periodicity condition 49(*7 = 2 7 r / a )  = 49(*7 = 0). 
This periodicity implies a discrete spectrum and a thermal representation. 

Note that equations (5.5) imply a confinement for both the Euclidean 
time r and the x direction. This double confinement for Euclidean coordin- 
ates in the laboratory system is similar to the one found in Section 4 for a 
spatially confined system at a finite temperature. In the laboratory system 
one may therefore think of a "mixture" of thermal and potential energy, 
although in the accelerated system one may talk of a Euclidean "energy" 
associated with rotations by the "angular" proper time. A detailed analysis 
of this point and of equations (5.1)-(5.3) along these lines is currently under 
progress. 

6. F I N A L  R E M A R K S  

It has been shown that if a quantity A can be written as an infinite 
sum of numerable terms (over integer or half-integer values), then the 
quantity A can also be represented as an integral "thermal" spectrum with 
a Planckian or a Fermi-Dirac denominator and a modified phase space. 
The thermal denominator is associated with the discreteness of the n sum 
and the modified effective phase space with the absence of long-wave 
contributions (small n). 

In the examples considered, the discreteness was due to the confinement 
in the configuration space (one-dimensional box, two parallel plates, and 
Einstein universes of radius R) or in the temporal dimension "r ( t -> i t )  in 
a 4-dimensional Euclidean space (thermal system). For s > 0, the absence 
of long-wave modes (due to the boundary or periodicity conditions) is 
responsible for the modification of the phase space. 
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Although more work is needed, the discussion presented in this paper 
suggests that the confinement of the system is the main ingredient in the 
thermodynamic representation of gravitational or cosmological problems. 
This confinement would imply "absolute ignorance" about the region out- 
side it and the thermodynamic features would therefore follow. 

It is also worth remarking that, although one may define a "tem- 
perature" from the exponential term of the Planckian or Fermi-Dirac 
denominator, neither h nor kB is present in the exponential. The thermal 
denominator and the modified phase-space numerator depend on the pres- 
ence of waves with angular momentum in a bounded spacetime. The 
quantum physics appears only through h as a multiplicative factor in T~ 
coming from a normalization associated with the zero-point energy for each 
mode hw/2. Strictly speaking, one could say that the problem does not 
have a thermodynamic character nor a quantum field one. 
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